Installation
Installation Guide¶
Get DataBeak up and running in just 2 minutes! This guide covers installation and client configuration.
Prerequisites¶
- Python 3.10+ (3.11+ recommended for best performance)
- Operating System: Windows, macOS, or Linux
- Package Manager: uv (recommended) or pip
Quick Install¶
Using uvx (Recommended)¶
The fastest way to install and run DataBeak:
# Install and run directly from GitHub
uvx --from git+https://github.com/jonpspri/databeak.git databeak
Using uv¶
For development or local installation:
# Install uv (one-time setup)
curl -LsSf https://astral.sh/uv/install.sh | sh
# Or on Windows:
# powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
# Clone and install
git clone https://github.com/jonpspri/databeak.git
cd databeak
uv sync
# Run the server
uv run databeak
Using pip¶
# Install directly from GitHub
pip install git+https://github.com/jonpspri/databeak.git
# Run the server
databeak
Client Configuration¶
Claude Desktop¶
Configure Claude Desktop to use DataBeak as an MCP server.
Add this to your MCP Settings file (Claude → Settings → Developer → Show MCP Settings):
{
"mcpServers": {
"databeak": {
"command": "uvx",
"args": [
"--from",
"git+https://github.com/jonpspri/databeak.git",
"databeak"
],
"env": {
"DATABEAK_MAX_FILE_SIZE_MB": "1024",
"DATABEAK_CSV_HISTORY_DIR": "/tmp/csv_history"
}
}
}
}
Continue (VS Code)¶
Edit ~/.continue/config.json
:
{
"mcpServers": {
"databeak": {
"command": "uvx",
"args": [
"--from",
"git+https://github.com/jonpspri/databeak.git",
"databeak"
]
}
}
}
Cline¶
Add to VS Code settings (settings.json
):
{
"cline.mcpServers": {
"databeak": {
"command": "uvx",
"args": [
"--from",
"git+https://github.com/jonpspri/databeak.git",
"databeak"
]
}
}
}
Windsurf¶
Edit ~/.windsurf/mcp_servers.json
:
{
"mcpServers": {
"databeak": {
"command": "uvx",
"args": [
"--from",
"git+https://github.com/jonpspri/databeak.git",
"databeak"
]
}
}
}
Zed Editor¶
Edit ~/.config/zed/settings.json
:
{
"experimental.mcp_servers": {
"databeak": {
"command": "uvx",
"args": [
"--from",
"git+https://github.com/jonpspri/databeak.git",
"databeak"
]
}
}
}
Environment Variables¶
Configure DataBeak behavior with these environment variables:
Variable | Default | Description |
---|---|---|
DATABEAK_MAX_FILE_SIZE_MB |
1024 | Maximum file size in MB |
DATABEAK_CSV_HISTORY_DIR |
"." | History directory path |
DATABEAK_SESSION_TIMEOUT |
3600 | Session timeout in seconds |
DATABEAK_CHUNK_SIZE |
10000 | Processing chunk size |
DATABEAK_AUTO_SAVE |
true | Enable auto-save |
Verification¶
Test the Installation¶
# Check if server starts (if installed locally)
uv run databeak --help
# Run with verbose output
DATABEAK_LOG_LEVEL=DEBUG uv run databeak
Test with MCP Inspector¶
# Install MCP Inspector
npm install -g @modelcontextprotocol/inspector
# Test the server
mcp-inspector uvx --from \
git+https://github.com/jonpspri/databeak.git databeak
Verify in Your AI Client¶
- Claude Desktop: Look for "databeak" in the MCP servers list
- VS Code: Check the extension's MCP panel
- Test Command: Try asking your AI to "list available CSV tools"
Troubleshooting¶
Common Issues¶
Server not starting¶
- Check Python version:
python --version
(must be 3.10+) - Verify installation:
uvx --from \ git+https://github.com/jonpspri/databeak.git databeak --version
- Check logs with debug level
Client can't connect¶
- Verify the command path in your configuration
- Ensure uvx is installed and accessible
- Check firewall settings for local connections
Permission errors¶
- On macOS/Linux: Check file permissions
- On Windows: Run as administrator if needed
- Verify the history directory is writable
Performance Tips¶
- Use uv instead of pip for faster package management
- Set appropriate
DATABEAK_MAX_FILE_SIZE_MB
for your use case - Configure
DATABEAK_CHUNK_SIZE
for large datasets - Use SSD storage for
DATABEAK_CSV_HISTORY_DIR
Getting Help¶
- GitHub Issues - Report bugs
- GitHub Discussions Ask questions
- Documentation - Browse complete docs
Next Steps¶
Now that DataBeak is installed:
- Quick Start Tutorial - Learn the basics
- API Reference - Explore all available tools
- Examples
- See real-world use cases
Installation complete! Your AI assistant now has powerful data manipulation capabilities.